Książki
Papiernia
Zabawki
Gry
Puzzle
Multimedia
Dom i ogród
Różności
Skarpetki
LEGO
Promocje

Miniatury matematyczne 82

Okładka książki Miniatury matematyczne 82

Szczegóły:

ISBN: 9788366838307
EAN: 9788366838307
oprawa: Miękka
wydanie: 1
format: 171x243 mm
język: polski
liczba stron: 64
rok wydania: 2023
(0) Sprawdź recenzje
Cena:
12,92 zł
Cena detaliczna: 
23,50 zł
45% rabatu
WYSYŁKA: 48h
Dodaj do koszyka
Dodaj do schowka
Najniższa cena z ostatnich 30 dni: 12,92

Opis

Na niniejszą książeczkę składają się trzy niezależne artykuły. Niewątpliwym bohaterem pierwszego z nich jest trójkąt równoboczny, ale nie jest to charakterystyka. Autor nie przedstawia tu rozlicznych i skądinąd bardzo ciekawych własności tej figury, lecz tropi jej czasami mocno ukrytą obecność w rozlicznych konfiguracjach geometrycznych. Nie ma żadnej przesady w tytule. Zapoznając się z kolejnymi przykładami, czujemy się jak na pokazie magii, tyle że zamiast królików z kapelusza wyłaniają się trójkąty równoboczne. A jak już je zauważymy, to pozornie chaotyczna sytuacja nabiera ładu i widać, jak znaleźć rozwiązanie. Drugi artykuł dotyczy "sprawiedliwego" podziału przysłowiowego tortu. Tort oznacza tu dowolne dobro, które nie może być matematycznie podzielone na równe części. W przypadku podziału na dwie części powszechnie znana jest procedura, która można streścić jako "jeden dzieli, drugi wybiera". Opis jej zastosowania znajdujemy już w Biblii. Tak właśnie Abraham i Lot podzielili między siebie krainę Kanaan. Sprawa komplikuje się jednak, gdy podziału należy dokonać pomiędzy większą liczbę osób lub gdy próbujemy podzielić dobra z natury niepodzielne. Jak na przykład dwóch kolegów powinno podzielić między siebie komputer i rower? Z pewnością są to problemy o dużym znaczeniu praktycznym. Można jedynie mieć wątpliwość, czy to jeszcze są problemy matematyczne. Problemami tymi zajął się na serio polski matematyk Hugo Steinhaus, który słynął z zainteresowania zadaniami leżącymi na styku matematyki, innych dziedzin wiedzy i działalności praktycznej. Śmiało można go nazwać współtwórcą współczesnej matematyki stosowanej. Artykuł w przystępnej formie przedstawia rozwiązania problemu podziału zaproponowane przez Steinhausa i innych matematyków. Trzeci, ostatni artykuł dotyczy prostokątnego układu współrzędnych. Przylgnęła do niego nazwa kartezjańskiego układu współrzędnych od nazwiska wielkiego, siedemnastowiecznego filozofa i matematyka Rene Descartes'a zwanego również Kartezjuszem. Legenda głosi, że wpadł on na pomysł układu, gdy leżąc w łóżku, obserwował muchę chodzącą po suficie i zastanawiał się, jak najprościej opisać komuś aktualne położenie muchy. Miał wówczas dojść do wniosku, że położenie najlepiej opisać, podając odległości muchy od dwóch sąsiednich ścian. Ile jest prawdy w tej legendzie? Z jednej strony wydaje się, że podobne pomysły pojawiały się to tu, to tam znacznie wcześniej. Z drugiej strony, na próżno szukać w dziele Kartezjusza o geometrii charakterystycznego obrazka z dwiema prostopadłymi osiami. Trzeba było pracy jeszcze jednego pokolenia matematyków, aby pomysły przyjęły znany nam dzisiaj kształt. Układ współrzędnych ułatwił rozwiązanie wielu problemów praktycznych, ale przede wszystkim pozwolił połączyć na nowo różne działy matematyki. Już w matematyce starożytnej Grecji można wyróżnić geometrię i arytmetykę, ale stanowiły jeszcze pewną całość. Matematycy tego czasu swobodnie używali metod geometrycznych do rozwiązania problemów arytmetycznych i odwrotnie. Wieki rozwoju oddaliły te dwa filary matematyki od siebie. Wprowadzenie układu współrzędnych pozwoliło odnaleźć nowe, twórcze powiązanie między nimi, które w krótkim czasie zaowocowało stworzeniem zupełnie nowych narzędzi matematycznych (np. w postaci rachunku różniczkowego i całkowego). Autorka artykułu pokazuje liczne przykłady elementarnych problemów geometrycznych, których rozwiązanie ułatwia zastosowanie współrzędnych, ale przedstawia też jedno z tych mniej oczywistych powiązań pomiędzy geometrią i arytmetyką, których odkrycie umożliwiło zastosowanie układu współrzędnych. Chodzi tu o twierdzenie Picka, które sprowadza obliczanie pola pewnych wielokątów do liczenia szczególnych punktów na płaszczyźnie (tzw. punktów kratowych).

Uwaga!!!
Ten produkt jest zapowiedzią. Realizacja Twojego zamówienia ulegnie przez to wydłużeniu do czasu premiery tej pozycji. Czy chcesz dodać ten produkt do koszyka?
Tak
Nie
Oczekiwanie na odpowiedź
Dodano produkt do koszyka
Kontynuuj zakupy
Przejdź do koszyka
Oczekiwanie na odpowiedź
Oczekiwanie na odpowiedź
Wybierz wariant produktu
Dodaj do koszyka
Anuluj
Oczekiwanie na odpowiedź