Książki
Papiernia
Zabawki
Gry
Puzzle
Multimedia
Dom i ogród
Na prezent
Skarpetki
LEGO
Promocje

DATA SCIENCE OD PODSTAW ANALIZA DANYCH W PYTHONIE

Okładka książki DATA SCIENCE OD PODSTAW ANALIZA DANYCH W PYTHONIE

Szczegóły:

Autor: JOEL GRUS

Wydawca: Helion
ISBN: 978-83-283-4602-4
EAN: 9788328346024
oprawa: miękka
Tłumaczenie: Matuk Konrad
tytuloryg: Data Science from Scratch: First Principles with Python
wydanie: 1
format: 240x170x15mm
język: polski
Seria: O'REILLY
liczba stron: 296
rok wydania: 2018
(0) Sprawdź recenzje
Cena:
35,48 zł
Cena detaliczna: 
57,00 zł
38% rabatu
Produkt niedostępny
Najniższa cena z ostatnich 30 dni: 35,31
Wpisz e-mail, jeśli chcesz otrzymać powiadomienie o dostępności produktu

Opis

Współczesne ogromne zbiory danych zawierają odpowiedzi na prawie każde pytanie. Równocześnie nauka o danych jest dziedziną, która cokolwiek onieśmiela. Znajduje się gdzieś pomiędzy subtelnymi umiejętnościami hakerskimi, twardą wiedzą z matematyki i statystyki a merytoryczną znajomością zagadnień z danej branży. Co więcej, dziedzina ta niezwykle dynamicznie się rozwija. Trud włożony w naukę o danych niewątpliwie się jednak opłaca: biegły analityk danych może liczyć na dobrze płatną, inspirującą i bardzo atrakcyjną pracę. Dzięki tej książce opanujesz najważniejsze zagadnienia związane z matematyką i statystyką, będziesz także rozwijać umiejętności hakerskie. W ten sposób zyskasz podstawy pozwalające na rozpoczęcie przygody z analizą danych. Gruntownie zapoznasz się z potrzebnymi narzędziami i algorytmami. Pozwoli Ci to lepiej zrozumieć ich działanie. Poszczególne przykłady, którymi zilustrowano omawiane zagadnienia, są przejrzyste, dobrze opisane i zrozumiałe. Podczas lektury książki poznasz biblioteki, które umożliwią zaimplementowanie omówionych technik podczas analizy dużych zbiorów danych. Szybko się przekonasz, że aby zostać analitykiem danych, wystarczy odrobina ciekawości, sporo chęci, mnóstwo ciężkiej pracy i... ta książka. Najważniejsze zagadnienia: Praktyczne wprowadzenie do Pythona Podstawy algebry liniowej, statystyki i rachunku prawdopodobieństwa w analizie danych Podstawy uczenia maszynowego Implementacje algorytmów modeli, w tym naiwny klasyfikator bayesowski, regresja liniowa, regresja logistyczna, drzewa decyzyjne, sieci neuronowe i grupowanie, MapReduce Systemy rekomendacji i mechanizmy przetwarzania języka naturalnego Korzystanie z mediów społecznościowych i baz danych. Python. Wyciśniesz z danych każdą kroplę wiedzy! O autorze Joel Grus jest inżynierem oprogramowania, analitykiem danych i autorem świetnie sprzedających się książek. Obecnie zajmuje się pracą badawczą w Allen Institute for Artificial Intelligence w Seattle. Wcześniej był zatrudniony w firmie Google i kilku startupach. Mieszka w Seattle, gdzie regularnie uczestniczy w spotkaniach lokalnej społeczności analityków danych. Regularnie publikuje posty na swoim blogu (joelgrus.com) i koncie @joelgrus w serwisie Twitter (http://twitter.com/joelgrus/).
Uwaga!!!
Ten produkt jest zapowiedzią. Realizacja Twojego zamówienia ulegnie przez to wydłużeniu do czasu premiery tej pozycji. Czy chcesz dodać ten produkt do koszyka?
Tak
Nie
Oczekiwanie na odpowiedź
Dodano produkt do koszyka
Kontynuuj zakupy
Przejdź do koszyka
Oczekiwanie na odpowiedź
Oczekiwanie na odpowiedź
Wybierz wariant produktu
Dodaj do koszyka
Anuluj
Oczekiwanie na odpowiedź